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ABSTRACT

We focus on the analysis, quantification and visualization
of atypicality in affective facial expressions of children with
High Functioning Autism (HFA). We examine facial Motion
Capture data from typically developing (TD) children and
children with HFA, using various statistical methods, includ-
ing Functional Data Analysis, in order to quantify atypical
expression characteristics and uncover patterns of expression
evolution in the two populations. Our results show that chil-
dren with HFA display higher asynchrony of motion between
facial regions, more rough facial and head motion, and a
larger range of facial region motion. Overall, subjects with
HFA consistently display a wider variability in the expressive
facial gestures that they employ. Our analysis demonstrates
the utility of computational approaches for understanding be-
havioral data and brings new insights into the autism domain
regarding the atypicality that is often associated with facial
expressions of subjects with HFA.

Index Terms— affective facial expressions, motion cap-
ture, functional data analysis, autism spectrum disorders

1. INTRODUCTION

Facial expressions provide a window to internal emotional
state and are key for successful communication and social in-
tegration. Individuals with High Functioning Autism (HFA),
who have average intelligence and language skills, often
struggle in social settings because of difficulty in interpret-
ing [1] and producing [2, 3] facial expressions. Their expres-
sions are often perceived as awkward or atypical by typically
developing observers (TD) [4]. Although this perception of
awkwardness is used as a clinically relevant measure, it does
not shed light into the specific facial gestures that may have
elicited that perception. This motivates the use of Motion
Capture (MoCap) technology and the application of statisti-
cal methods like Functional Data Analysis (FDA, [15]), that
allow us to capture, mathematically quantify and visualize
atypical characteristics of facial gestures. This work is part
of the emerging Behavioral Signal Processing (BSP) domain

that explores the role of engineering in furthering the under-
standing of human behavior [5].

Starting from these qualitative notions of atypicality, our
goal is to derive quantitative descriptions of the characteris-
tics of facial expressions using appropriate statistical analy-
ses. Through these, we can discover differences between TD
and HFA populations that may contribute to a perception of
atypicality. The availability of detailed MoCap information
enables quantifying overall aspects of facial gestures such as
synchrony and smoothness of motion, that may affect the fi-
nal expression quality. Dynamic aspects of facial expressions
are of equal interest, and the use of FDA techniques such us
functional PCA (fPCA) provides a mathematical framework
to estimate important patterns of temporal variability and ex-
plore how such variability is employed by the two popula-
tions. Finally, given that children with HFA may display a
wide variety of behaviors [6], it is important to understand
child-specific expressive characteristics. The use of multidi-
mensional scaling (MDS) addresses this point by providing
a principled way to visualize differences of facial expression
behavior across children.

Our work proposes the use of a variety of statistical ap-
proaches to uncover and interpret characteristics of behav-
ioral data, and demonstrates their potential to bring new in-
sights into the autism domain. According to our results, sub-
jects with HFA are characterized on average by lower syn-
chrony of movement between facial regions, more rough head
and facial motion, and a larger range of facial region motion.
Expression-specific analysis of smiles indicates that children
with HFA display a larger variability in their smile evolution,
and may display idiosyncratic facial gestures unrelated to the
expression. Overall, children with HFA consistently display
a wider variability of facial behaviors compared to their TD
counterparts, which corroborates with existing psychologi-
cal research [6]. Those results shed light into the nature of
expression atypicality and certain findings, e.g., asynchrony,
may suggest an underlying impairment in the facial expres-
sion production mechanism that is worth further investigation.



2. RELATED WORK

Since early psychological works [7, 8], autism spectrum dis-
orders (ASD) have been linked to the production of atypical
facial expressions and prosody. Autism researchers have re-
ported that the facial expressions of subjects with ASD are of-
ten perceived as different and awkward [2, 3, 4]. Researchers
have also reported atypicality with the synchronization of ex-
pressive cues, e.g., verbal language and body gestures [9]. In-
spired by these observations of asynchrony, we examine syn-
chronization properties of minute facial gestures, which are
often hard to describe by visual inspection.

Recent computational work aims to bring new under-
standing of this psychological condition and develop techno-
logical tools to help ASD individuals and psychology prac-
titioners. Work in [10] describes eye tracking glasses to be
worn by the practitioner and track gaze patterns of children
with ASD during therapy sessions, while [11] introduces an
expressive virtual agent that is designed to interact with chil-
dren with ASD. Computational analyses have mostly focused
on atypical prosody, where certain prosodic properties of sub-
jects with ASD are shown to correlate with the severity of
autism diagnosis [12, 13, 14]. In contrast, computational anal-
ysis of atypical facial expressions is a relatively unexplored
topic.

Our analysis relies heavily on FDA methods, which were
introduced in [15] as a collection of statistical methods for ex-
ploring patterns in time series data. A fundamental difference
between FDA and other statistical methods is the represen-
tation of time series data as functions rather than multivariate
vectors, which exploits their dynamic nature. FDA techniques
have been successfully applied for quantifying prosodic vari-
ability in speech accents [16], and the analysis of tendon in-
juries using human gait MoCap data [17].

3. DATABASE

We analyze data from 37 children (21 with HFA, 16 TD)
aged 9-14, while they perform mimicry of emotional facial
expression videos from the Mind Reading CD, a common
psychology resource [18]. Expressions last a few seconds and
cover a variety of emotions including happiness (smile), anger
(frown) and emotional transitions, e.g. surprise followed by
happiness (mouth opening and smile). Children are instructed
to watch and mimic those expressions. There are two prede-
fined sets of expressions with 18 expressions each, covering
similar expressions. Each child mimics the 18 expressions of
one set. Children wear 32 facial markers, as in Figure 1, and
are recorded by 6 MoCap cameras at 100 fps.

4. DATA PREPARATION

Four stability markers were used to factor out head movement
(depicted in Fig 1 as larger markers in the forehead and ears).

Fig. 1. Placement of facial markers and definition of facial
distances (left) and facial regions (right).

The positions of the remaining 28 markers are computed with
respect to the stability markers and used for further facial ex-
pression processing, while the the stability markers are used
to provide head motion information. Facial data were further
rotated to align with the (x,y,z) axes as depicted in Figure 1,
and were centered to the origin of the coordinate system. Data
visualization tools were developed to visually inspect the Mo-
Cap sequence and correct any artifacts.

We perform face normalization to smooth out subject-
specific variability due to different facial structure, and focus
on expression related variability. We apply the normalization
approach proposed in our previous work [19], where each
subject’s mean marker positions are shifted to match to the
global mean positions computed across all subjects. Finally,
marker trajectories were interpolated to fill in gaps shorter
than 1sec, that result from temporarily missing or occluded
markers. We use cubic Hermite spline interpolation, which
we empirically found to produce visually smooth results.

Marker data are then transformed into functional data.
This process consists of approximating each marker coordi-
nate time series, e.g., x1, ...xT , by a function say x̂(t) =∑K

k=1 ckφk(t), where φk, k = 1, . . . ,K are the basis func-
tions and c1, c2, . . . , ck are the coefficients of the expansion.
Conversion into functional data performs smoothing of the
original time series, enables computing smooth approxima-
tions of high order derivatives of marker trajectories (Section
5), and enables FDA methods such as fPCA (Section 6).

We use B-splines as basis functions, which are commonly
used in FDA because of their flexibility to model non-periodic
series [15, 16]. Fitting is done by minimizing:

F =
∑
i

[xi − x̂(ti)]2 + λ

∫
[D2x̂(t)]2dt

whereD2 denotes second derivative and parameter λ con-
trols the amount of smoothing (second term) relative to the
goodness of fit of function x̂ (first term). We choose λ = 1
empirically according to the Generalized Cross Validation



Table 1. Results of Statistical Tests of Global Facial Charac-
teristics (t-test, difference of means)
comparison result

Left-Right Face Synchrony
left-right mouth corner cor-
relations

Lower correlations for HFA,
p=0.02

left-right cheek correlations Lower correlations for HFA,
p=0.07

left-right eyebrow correla-
tions

Lower correlations for HFA,
p=0.01

Upper-Lower Face Synchrony
right eyebrow & mouth
opening correlations.

Lower correlations for HFA,
p=0.05

left eyebrow & mouth open-
ing correlations

Lower correlations for HFA,
p=0.03

Facial Motion Roughness (i = 2)
mouth roughness Higher roughness for HFA,

p=0.02
right cheek roughness Higher roughness for HFA,

p=0.01
left cheek roughness no difference
right eyebrow roughness Higher roughness for HFA,

p=0.07
left eyebrow roughness no difference

Head Motion Roughness (i = 2)
head roughness Higher roughness for HFA,

p ≈ 0
Facial Motion Range

upper mouth motion range Higher range for HFA,
p ≈ 0

lower mouth motion range Higher range for HFA,
p ≈ 0

right cheek motion range Higher range for HFA,
p ≈ 0

left cheek motion range no difference
right eyebrow motion range no difference
left eyebrow motion range no difference

(GCV) criterion [20]. The FDA analysis throughout the paper
is performed using the FDA toolbox [20].

5. ANALYSIS OF GLOBAL CHARACTERISTICS OF
AFFECTIVE EXPRESSIONS

We group the expressions into two groups containing expres-
sions produced by subjects with TD and HFA, and perform
statistical analysis of expressive differences. We examine
properties inspired from psychology, such as synchrony [9],
or properties that intuitively seem to affect the quality of the
final expression, e.g., facial motion smoothness and range of
marker motion (large range may suggest exaggerated expres-
sions).

TD and HFA groups contain roughly 16× 18 and 21× 18

expressions respectively, although certain samples are re-
moved because of missing or noisy markers. When group-
ing together various facial expressions, we want to smooth
out expression-related variability and focus on subject-related
variability. Therefore, all metrics described below are nor-
malized by mean shifting such that the mean of each met-
ric per expression (and across multiple subjects) is the same
across expressions.

We examined synchrony of movement across left-right
and upper-lower face regions. For left-right comparisons, we
measured facial distances associated with muscle movements,
specifically mouth corner, cheek raising, and eyebrow raising.
These distances are depicted as D1, D2 and D3 respectively
for the right face and D1′, D2′, D3′ for the left face, in Fig
1. To measure their motion synchrony, we computed Pear-
son’s correlation between D1- D1′, D2-D2′ and D3-D3′.
For upper-lower comparisons, we measured mouth opening
(D4, Figure 1) and eyebrow raising distances (D3 and D3′),
and we computed Pearson’s correlation between D4-D3, and
D4-D3′. We examine the statistical significance of group dif-
ferences in correlation using a difference of means t-test. Re-
sults are presented in Table 1 indicating lower facial move-
ment synchrony for subjects with HFA.

Although statistical tests reveal global differences,
subject-specific characteristics are also of interest. Subject
characteristics are visualized using multidimensional scaling
(MDS), which is a collection of methods for visualizing the
proximity of multidimensional data points [21]. MDS takes
as input a distance (dissimilarity) matrix, where dissimilar
data points are more distant, and provides methods for trans-
forming data points into lower dimensions, typically two di-
mensions for easy visualization, while optimally preserving
their dissimilarity.

Here, a data point is a subject associated with a multidi-
mensional feature of average correlations. A subject performs
18 expressions, and for each we compute the 3 left-right facial
correlations mentioned above. By averaging over expressions
we compute a 3D average correlation feature per subject. Dis-
similarity between subjects is computed by taking euclidean
distances of their respective features. MDS uses this dissim-
ilarity matrix to compute the distances between subjects in
2D space. Figure 2(a) shows the MDS visualization for TD
subjects represented in blue ‘T’, and subjects with HFA in
red ‘A’, when the average left-right symmetry correlations are
used as features (we applied non-classical multidimensional
scaling using the metricstress criterion, and confirmed that
original dissimilarities are adequately preserved in 2D [21]).
Intuitively, Figure 2(a) illustrates similarities of subjects with
respect to left-right facial synchrony behavior. We notice that
subjects with HFA generally display larger behavioral vari-
ability, although there is one TD outlier. This visualization
could help clinicians understand subject-specific characteris-
tics with respect to particular facial behaviors.

Smoothness of motion was investigated by computing



(a) Left-right face synchrony.

(b) Face region motion roughness.

Fig. 2. MDS visualization of similarities across subjects for
left-right synchrony and facial region motion roughness met-
rics.

higher order derivatives of facial and head motion. We ex-
amine 5 facial regions, i.e., left and right eyebrows, left and
right cheeks, and mouth (Figure 1). Each region centroid is
computed by averaging the markers in that region, and for
each centroid motion we estimate the absolute derivatives of
order i, i = 1, 2, 3 averaged during the expression. We call
this a roughness measure of order i. Similar computations
are performed for head motion, where the head centroid is the
average of the 4 stability markers. The results in Table 1, in-
dicate more roughness of head and lower/right facial region
motion for subjects with HFA. For lack of space we present
only acceleration results (i = 2), but other order derivatives
follow similar patterns. We perform MDS analysis using as
features the average acceleration roughness measures per sub-
ject from mouth, right cheek and right eyebrow regions. We
select those regions since, according to Table 1, they have
significantly higher roughness measures. According to the re-
sulting MDS visualization of Figure 2(b), subjects with HFA
are more likely to be outliers and display larger variability.

Finally, we examine the range that facial regions traverse
during an expression, i.e. range of motion for eyebrows,
cheeks, upper and lower mouth region centroids. This range
is significantly higher for the HFA group for lower and right
face regions, as seen in Table 1.

6. QUANTIFYING EXPRESSION-SPECIFIC
ATYPICALITY THROUGH FPCA

While previous analyses looked at global expression proper-
ties, here we perform expression-specific analysis focusing
on dynamic expression evolution. As an example, we choose
an expression of happiness, consisting of two consecutive
smiles. This expression belongs to one of the two expres-
sion sets mentioned in Section 3, so it is only performed by
19 children (7 TD, 12 HFA), out of the 37 children in our
database. Smiles are chosen for study because they are com-
mon in a variety of social interactions. Moreover, since this
expression contains a transition between two smiles, it has
increased complexity and is a good candidate for revealing
typical and atypical variability patterns. Finally, mouth re-
gion expressions seem to differ between TD and HFA groups,
as shown in Section 5, while the onset and apex of those ex-
pressions are easily detected by looking at mouth distances,
for example distance D1 from Figure 1.

In Fig 3(a) we depict the mouth corner distance D1 dur-
ing the two smiles expression from a TD subject (blue solid
line), and a subject with HFA (red dashed line). The expres-
sion of the TD subject depicts a typical evolution where the 2
distance minima (black circles) correspond to the apex of the
two smiles and are surrounded by 3 maxima (black squares),
representing the beginning, middle (between smiles) and end
of the expression respectively. The expression of the sub-
ject with HFA follows a more atypical evolution and contains
seemingly unrelated motion, for example the oscillatory mo-
tion in the middle.

For better comparison, expressions are aligned such that
the smile apices of different subjects coincide. We apply a
method called landmark registration [15, 16], which uses a
set of predefined landmarks, e.g., comparable events during
an expression, and computes warping functions such that the
landmark points of different expression realizations coincide.
Here we define 5 landmarks; the 2 minima (smile apices) and
3 maxima described above. Landmarks are automatically de-
tected by searching for local maxima/minima and are manu-
ally corrected if needed. In Figure 3(e) we show the subjects’
expressions after landmark registration, where the two smile
events are aligned and clearly visible.

After alignment, we compute principal components of ex-
pression variability using fPCA. fPCA is an extension of or-
dinary PCA that operates on a set of functional input curves,
i.e., xi(t), i = 1, .., N (here N=19). fPCA iteratively com-
putes eigenfunctions ξj(t) such that the data variance along
the eigenfunction is maximized at each step j, i.e., maximize
V ar

( ∫
ξj(t)xi(t)dt

)
, subject to normalization and orthogo-

nality constraints, i.e.,
∫
ξ2j (t)dt = 1 and

∫
ξj(t)ξk(t)dt =

0,∀k 6= j. The resulting set of eigenfunctions represents an
orthonormal basis system where input curves are decomposed
into principal components of variability. The PCA score of in-
put curve xi(t) along ξj(t) is defined as cij =

∫
ξj(t)xi(t)dt



(a) Smile evolution examples (b) Eigenfunction 1(42% variability) (c) Eigenfunction 2(28% var.) (d) Eigenfunction 3(12% var.)

(e) After landmark registration (f) fPCA 1 vs fPCA 2 scores (g) fPCA 1 vs fPCA 3 scores (j) fPCA 2 vs fPCA 3 scores

Fig. 3. Analysis of the expression of two consecutive smiles. Plots of distance D1 from multiple subjects before and after
landmark registration (subjects with HFA in red, TD in blue lines). Plots of the first 3 fPCA harmonics and scatterplots of
corresponding fPCA scores.

(assuming mean subtracted curves for simplicity).
Figures 3(b)-(d) present the first 3 eigenfunctions (har-

monics), cumulatively covering 82% of total variability. As
in [15], the black line is the mean curve, and the solid red line
and dashed blue lines illustrate the effect of ξj(t) by adding
or subtracting respectively std(cj)× ξj(t) to the mean curve
(standard deviation std(cj) is computed over all PCA scores
cij). Although, these three first principal components of vari-
ability are estimated in a data-driven way, they seem visually
interpretable. They respectively account for variability of:
overall expression amplitude (Fig. 3(b)), the smile width as
defined by the curve dip happening between initial and end-
ing points (Fig. 3(c)), as well as mouth closing and second
smile apex happening in the second half of the expression
(Fig. 3(d)). Figures 3(f)-(j) present scatterplots of the first
3 PCA scores of different subjects’ expression. Subjects with
HFA display a wider variability of PCA score distribution,
which translates to wider variance in the expression evolu-
tion, and potentially contributes to an impression of atypical-
ity. Note that fPCA is unaware of the diagnosis label when
it decomposes each expression into eigenfunctions. This de-
composition naturally reveals differences between the TD and
HFA groups in the way the smile expression evolves.

We performed fPCA analysis of various expressions, and
made similar observations of greater variability in the evolu-
tion of expressions by subjects with HFA, mostly for com-
plex expressions containing transitions between facial ges-
tures e.g., mouth opening and then smile, consecutive smiles
of increasing width. Mimicry of such expressions might be
challenging for children with HFA, and may thus reveal dif-
ferences between expressions of the two groups. Note that
since we analyze posed expressions from children we would

expect some degree of unnaturalness from the subjects. How-
ever, Figures 3(a) and (f)-(j) suggest a different nature and
wider variance of expressive choices produced by subjects
with HFA, which are sometimes unrelated to a particular ex-
pression. For example, the oscillatory motion displayed by
the subject with HFA at Figure 3(a) appears in other facial re-
gions and other expressions of the same subject, and seems to
be an idiosyncratic facial gesture.

7. CONCLUSIONS AND FUTURE WORK

We have focused on quantifying atypicality in affective facial
expressions, through the statistical analysis of MoCap data
from facial gestures, which are hard to describe quantitatively
by visual inspection. For this purpose, we have demonstrated
the use of various data representation, analysis and visual-
ization methods for behavioral data. We have found statisti-
cally significant differences in the affective facial expression
characteristics between TD children and children with HFA.
Specifically, children with HFA display more asynchrony of
motion between facial regions, more head motion roughness,
and more facial motion roughness and range for the lower
face regions, compared to TD children. Children with HFA
also display a wider variability in the expressive choices that
they employ. Our results shed light on the characteristics of
facial expressions of children with HFA and support qualita-
tive psychological observations regarding atypicality of those
expressions [2, 3]. In general, our described analyses could be
applied in various time series data of human behavior, where
the main goal is the discovery and interpretation of data pat-
terns.

Our future work includes analysis of a wider range of



expressions including both positive and negative emotions.
We also plan to obtain perceptual measurements of awkward-
ness of the collected expressions by TD observers in order
to further interpret our findings. Finally, the availability of
facial marker data enables analysis-by-synthesis approaches,
including facial expression animation using virtual charac-
ters. It would be interesting to explore if the development of
expressive virtual characters for animation and manipulation
of typical and atypical facial gestures could provide any fur-
ther insights to autism practitioners, or provide a useful edu-
cational tool of facial expression visualization for individuals
with HFA.
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