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ABSTRACT

Children with Autism Spectrum Disorder (ASD) are known to have
difficulty in producing and perceiving emotional facial expressions.
Their expressions are often perceived as atypical by adult observers.
This paper focuses on data driven ways to analyze and quantify atyp-
icality in facial expressions of children with ASD. Our objective is to
uncover those characteristics of facial gestures that induce the sense
of perceived atypicality in observers. Using a carefully collected mo-
tion capture database, facial expressions of children with and without
ASD are compared within six basic emotion categories employing
methods from information theory, time-series modeling and statisti-
cal analysis. Our experiments show that children with ASD exhibit
lower complexity in facial dynamics, with the eye regions contribut-
ing more than other facial regions towards the differences between
children with and without ASD. Our study also notes that children
with ASD exhibit lower left-right facial symmetry, and more uni-
form motion intensity across facial regions.

Index Terms— Affect, Autism, Emotion, Facial expressions,
Motion Capture.

1. INTRODUCTION

Facial expressions provide non-verbal manifestations of internal
emotional states that play a critical role in interpersonal commu-
nication and social interactions. Children with Autism Spectrum
Disorder (ASD), who usually have restrictive social-communication
skills, are known to have difficulty in producing and perceiving
emotional facial expressions [1, 2]. Their expressions are often
perceived as atypical or awkward as compared to their typically
developing (TD) peers by typical adult observers. This perception
of awkwardness is holistic, and a clinically acceptable qualitative
measure of Autism [3]. Understanding the fine details of facial
expression production mechanisms of children with ASD can bring
objective insights into the nature of the perceived awkwardness.

Psychological work has established links between children with
ASD and atypicality in their facial gestures, prosody, and body ges-
tures [4, 5, 6, 7]. On the computational front, effort has been made to
analyze atypicality in prosody [8, 9] and asynchronization of speech
and body gestures of children with ASD [5, 10]. Computational
work to analyze and quantify subtle differences in facial expressions
that are otherwise difficult to understand by mere visual inspection
is scarce, but nevertheless of great importance.

Motion capture (MoCap) data analysis was introduced as a pow-
erful approach for quantifying differences in facial expressions be-
tween ASD and TD groups in our previous work [11]. In this a pre-
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liminary study [11], subjects with autism were found to have more
rough facial and head motion.

In this paper, we investigate the emotion-specific atypicality
in facial expressions of children with ASD using a larger MoCap
database, by looking at global as well as region-based facial move-
ments and dynamics. To this end, we group facial expressions
into six basic emotion categories (Anger, Disgust, Fear, Happiness,
Sadness and Surprise), and study how the characteristics of facial
gestures vary with the emotions being conveyed. Our goal is two-
fold: (i) understanding the overall complexity of the underlying
mechanisms that generate facial expressions; (ii) examining the di-
vergence between ASD and TD subjects in terms of region-based
dynamics and activation of emotion-specific expressions. To achieve
this, we employ various methods from information theory, statistics
and time-series modeling. Characteristics of each emotion group are
examined separately by analyzing facial MoCap marker data at two
spatial scales using the entire face, and the eight local regions that
divide a face (see Fig. 1).

2. THE MIMICRY DATABASE

This paper uses a MoCap marker database (designed and created by
R. Grossman at the Facelab [12]) that has 45 subjects (24 with ASD
and 21 TD) aged between 9 to 14 years. The subjects were shown
emotional facial expression videos (reference stimuli) from the Mind
Reading CD - a psychology resource [13]. The subjects were in-
structed to mimic those expressions. There are two predefined, very
similar sets of expressions with 18 tasks in each set. Each subject
mimics only one set of expressions, i.e. , 18 different expressions.
These expressions include smiling, frowning, being tearful, etc., and
belong to one of the six basic emotion groups - Anger, Fear, Disgust,
Happiness, Sadness and Surprise.

Data were collected from 32 facial markers worn by each child
(as shown in Fig. 1) using 6 MoCap cameras at 100 fps. Four sta-
bility markers were placed on the forehead and ears, and are used
to measure and correct head motion. The positions of the remaining
28 markers are recomputed with respect to the stability markers to
factor out movement caused by head motion so that we can focus
on expression-related motion. Information from these 28 markers is
used for analysis of facial expressions.

3. DATA ANALYSIS AND RESULTS

Facial MoCap data were subject to proper alignment, artifact re-
moval, missing data interpolation, smoothing, and face normaliza-
tion as detailed in [11]. Face normalization is important because
it removes subject-specific variability due to differences in facial



Fig. 1. Facial marker positions (left) and division of markers into the
eight facial regions (right).

shapes and structures, and thus we can focus on purely expression
related variability. After executing the above preprocessing steps,
facial marker data from each subject for each expression is presented
in the form of a matrix D ∈ RT×M where T is the total number of time
samples for an expression, and M = 28 is the total number of facial
markers. Note that in this work, we concentrate only on the horizon-
tal and vertical displacement of the markers (x and z directions in
Fig. 1).

We divide all facial expressions into two groups according to
expressions produced by ASD and TD subjects. Within each group,
the expressions were further partitioned into six emotion categories:
Anger, Disgust, Fear, Happiness, Sadness and Surprise. ASD and
TD subjects are analyzed and compared within each emotion cate-
gory.

3.1. Dynamical Complexity Analysis

We begin with investigating the complexity of underlying mecha-
nisms that generate facial expressions in children with and without
ASD. We hypothesize that complexity will be lower for the ASD
group. Traditional entropy measures assess the complexity of a sys-
tem by quantifying local predictability or irregularity at a single scale
and treat data from multiple variables as independent univariate sys-
tems [14]. Complexity analysis of a multivariate dynamic system
requires the assessment of long-range linear/non-linear correlations
within and across channels at multiple spatial and temporal scales. A
recently developed entropy measure, namely the multivariate multi-
scale entropy (MMSE), [15, 16] is capable of quantifying the in-
herent complexity of a system by detecting dynamic structures or
regularity within and across channels at multiple temporal scales.

Consider a multivariate time series D as above. For a given
temporal scale factor ε, a coarse-grained version of D is obtained
by partitioning each channel into T/ε non-overlapping segments and
averaging the values within each segment. Given a time lag vector
τ = [τ1, τ2, ..., τM] and an embedding vector m = [m1,m2, ...,mM],
all possible composite delay vectors are formed by concatenatingmi

components from the ith channel sampled at the rate of τi where
i = 1, 2, ..., M. Multivariate sample entropy is then computed for
the coarse-grained time series in terms of the conditional probability
of two composite vectors being close (in sense of a distance metric)
in an (m + 1) dimensional space, given that they are close in m
dimensional space. For further details refer to [17, 15, 16].

For every emotion category, each expression matrix, D, is sub-
ject to MMSE analysis at ε = 1, 2, ..., 5; a single score is obtained
for each ε. Mean MMSE scores for the ASD and TD groups are
computed at ε, and results are presented in Fig. 2. In general, one
multivariate time series is considered more complex than the other
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Fig. 2. Analysis of dynamical complexity computed in terms of mul-
tivariate entropy at multiple time scales for ASD and TD population
for each emotion group.

when it has higher entropy at the majority of temporal scales [16].
Results in Fig. 2 show that (i) TD group has a more complex ex-
pression generating mechanism than the ASD group for emotions
like Disgust, Fear, Sadness and Surprise; (ii) For Sadness, the dif-
ference between the groups is the largest, indicating that expressions
within this emotion group are likely to induce more atypicality to the
observers; (iii) Sadness and Fear are more complex emotions com-
pared to others; (iv) For Anger and Happiness, ASD and TD groups
do not exhibit very clear differences in complexity.

3.2. Analysis Based on Local Regions

For robust processing and interpretability of facial behavior, we di-
vide the markers into 8 regions as shown in Fig. 1, and perform anal-
ysis at the region level. These regions are: left eyebrow (LEB), right
eyebrow (REB), left eye (LE), right eye (RE), left cheek (LC), right
cheek (RC), left mouth (LM), and right mouth (RM). Note that only
22 markers are considered in the region-based analysis (unless men-
tioned otherwise), while all 28 markers are used during the complex-
ity analysis.

3.2.1. Autoregressive Modeling

In this section, we build a reference model for each TD subject,
and investigate how the temporal dynamics of ASD subjects diverge
from the reference models within each emotion category.



Fig. 3. Sample plots of partial autocorrelation coefficients as a func-
tion of order p for the LEB and RC regions. A similar trend is ob-
served for all other regions.

To this end, we average the (xt, yt) coordinates of frame t over
the markers within each region, and compute the L2 distance using
the averaged coordinates, i.e. dt =

√
(x̄2t + ȳ2t ). This time se-

ries describes the dynamic evolution of an expression within each
facial region. Autoregressive (AR)) models are popular for describ-
ing time-varying processes. Given a TD or ASD subject, we employ
an AR model to capture the temporal dynamics of the representative
time series of each facial region. An AR model of order p is defined
as follows:

dt =

p∑
i=1

αidt−i + σt, (1)

where σt is white noise, and {αi}pi=1 are the model parameters
which parameterize the overall temporal dynamics of the given time
series. Accordingly, the dynamics of the jth facial region of the
kth TD or ASD subject are represented by a p-dimensional feature
vector fkj = [α1, α2, · · · , αp].

To determine the order, p, of the model, we examine the partial
autocorrelation coefficients in relation to p for each facial region. By
averaging the coefficients of each p across all the TD and ASD sub-
jects, we find that the mean coefficient value converges at p = 4 for
all the facial regions. Therefore, we use a 4th order AR model for
our analysis. Fig. 3 presents sample plots of the partial autocorrela-
tion coefficients as a function of p for LEB and RC regions.

Within each emotion group, we compute the region-based dis-
tance between the dynamic feature vectors of each ASD-TD subject
pair. Such a distance measures the dynamical divergence of ASD
subjects from the reference (TD subjects) with respect to each facial
region. Fig. 4(a) visualizes the mean region-based distance of fa-
cial dynamics between pairwise ASD and TD subjects in each emo-
tion category. We can observe that the ASD subjects in the disgust
category generally show the largest difference of facial dynamics
from the reference. This result is consistent with the observation in
Section 3.1 that higher complexity difference between ASD and TD
groups exists for the Disgust expressions. In addition, the distance
between ASD and TD subjects in the upper region including eye-
brows and eyes is significantly larger compared to the lower region
containing cheek and mouth. In particular, the highest dynamical di-
vergence of ASD subjects from the reference is observed for eye re-
gions. We summarize the mean distance of upper and lower regions
within each emotion category in Fig. 4(b). These results indicate
that the lower complexity of facial expressions of ASD subjects may
result largely from the lower activation of their upper-face regions,
especially the eye regions.

3.2.2. Activation Analysis

In this section, we study and compare facial expressions of the ASD
and TD subjects in terms of activation of regions. Activation of a

(a)

Anger Disgust Fear Happiness Sadness Surprise

Upper 0.79 1.02 0.76 0.73 0.79 0.80
Lower 0.47 0.48 0.45 0.44 0.43 0.44

(b)

Fig. 4. Mean region-based distances between facial dynamics of
ASD and TD subjects in each emotion group. Eye regions (RE and
LE) show large differences between ASD and TD groups.

Table 1. Results of statistical t-tests for facial characteristics includ-
ing all emotion categories with N = 45

Similarity with stimuli
Correlations between computed
activation and manual ratings

Lower correlations for ASD,
p = 0.024

Left-Right activation symmetry
Correlations between left and
right regions

Lower correlations for ASD,
p = 0.0554

Upper-Lower activation divergence
Difference in activation be-
tween upper and lower regions

Lower divergence for ASD,
p = 5.23e-4

region can be understood as the intensity of movement the region
undergoes during an expression. We first investigate how close the
mimicry performances of the ASD and TD subjects are to the stimuli
that were presented as references; we then move on to analyze in
what ways their mimicry performances differ.

Similarity with stimuli: In order to be able to compare the two
groups with respect to the stimuli, we collected manual annotations
only for the 36 reference stimuli videos - the clips the children were
shown and instructed to mimic. Four experts rated each facial region
based on how active each region appears during an expression. A
score between 0 and 5 was given to each of the 8 facial regions (see
Fig. 1) where a score of 0 indicates no activation, and 5 indicates
high activation. These scores are averaged across raters to obtain av-
erage ratings per region per stimuli video. Each reference video is
associated with a rating vector r ∈ R8 containing average activation
ratings for 8 regions. Annotations are available only for the stimuli
videos. For the expressions of ASD and TD subjects, we compute a
measure of activation from the facial marker data itself. This mea-
sure is expected to correspond with the activation perceived by the
annotators. Intuitively, perception of activation of a region is associ-
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Fig. 5. Comparison between ASD and TD subjects in terms of (a) Similarity with stimuli (b) Left-Right activation symmetry, and (c) Upper-
Lower face activation divergence for individual emotion group.

ated with how much the region moves; hence we define activation as
the total amount of motion exhibited by all the markers in that facial
region over the duration of an expression.

Consider a facial region that contains P (⊂ M) markers. Let
the coordinates of the ith marker be (xi1, y

i
1), (xi2, y

i
2), ..., (xiT, y

i
T),

where i = 1, 2, .., M and T is the total number of time samples. An
activation score a for the region is computed as follows:

a =

P∑
i=1

1

T

T∑
t=1

(|xit+1 − xit|+ |yit+1 − yit|) (2)

After computing a for each local region, each data sample D is rep-
resented by a vector a ∈ R8 containing activation values for all
regions: a = [aLEB, aREB, aLE, aRE, aLC, aRC, aLM, aRM].

To study how well the ASD and TD subjects mimic a facial
expression E, we compute correlation between the computed acti-
vation aE and the manual annotations of the corresponding stimuli,
rE. Correlation coefficients are computed for each sample, and
are averaged across all emotions for each subject in ASD and TD
groups. A two-sample t-test is carried out with N = 45 (24 ASD
+ 21 TD). Significant difference between the groups is observed
(see Table 1). Results for individual emotion category are presented
in Fig. 5(a), which show that mimicry performance of the ASD
group is less similar to the stimuli as compared to the TD group.
The largest difference between groups is observed for Sadness and
Happiness emotions indicating that ASD subjects have higher diffi-
culty in mimicking these emotions. Whether this inferior mimicry
performance of the ASD subjects is due difficulty in perception of
the stimuli and/or in reproducing the gestures is an open question.

Left-Right (L-R) activation symmetry: Bilateral symme-
try is an important characteristic of facial expressions. To mea-
sure this quantity, activation corresponding to the left and right
sides of a face are computed as aL = [aLEB, aLE, aLC, aLM] and
aR = [aREB, aRE, aRC, aRM]. Left-Right activation symmetry for each
data sample is measured in terms of correlation between aL and aR.
Correlation coefficients for ASD and TD subjects (averaged across
all emotions for each subject) were used to perform a two-sample
t-test with N = 45. Marginally significant differences are observed
between the groups (Table 1). Results for individual emotion group
are presented in Fig. 5(b), which show that ASD group has lower
LR symmetry compared to the TD group; the difference is more
pronounced for expressions of sadness. Despite subtle differences,
most expressions are deemed symmetric, and lack of facial symme-
try in ASD subjects may give rise to a sense of awkwardness.

Upper-Lower (U-L) activation divergence: Activation diver-
gence between upper and lower regions signify the range of activa-
tion for an expression. Intuitively, this quantity is associated with
how animated an expression is. The activation corresponding to the
upper and lower regions of a face, aup and alr, are computed as fol-
lows:

aup =

∑
j∈{LEB,REB,LE,RE} aj∑M

i=1 ai
, alr =

∑
j∈{LC,RC,LM,RM} aj∑M

i=1 ai
(3)

For all ASD and TD subjects, activation in upper region is much less
than that in lower region for all expressions. Activation divergence
(alr − aup), a positive quantity, is computed for each subject as be-
fore, and group difference is obtained. Significant difference is noted
between the two groups (Table 1). Results for individual emotion
categories are presented in Fig. 5(c), which show that ASD group has
lower UL activation difference compared to the TD group; the dif-
ference is more pronounced for emotion category Disgust. This ob-
servation is consistent with the higher difference in upper and lower
region facial dynamics obtained in time-series modeling for Disgust
in Section 3.2.1. This is also suggestive of lower dynamic complex-
ity of facial expressions in ASD.

4. CONCLUSION

In this paper, we analyzed facial expressions of children with ASD
using MoCap data. The objective of this analysis is to quantify the
emotional expressive atypicality often perceived by observers. We
studied various global and local (region-based) characteristics using
various signal processing and time series analysis tools.

Our major findings are: (i) overall, ASD subjects have less com-
plex facial expressions, supporting the well known complexity loss
theory in medical science under a disorder or disease [18]; (ii) the
differences in facial dynamics between ASD and TD come mainly
from the eye region; (iii) ASD subjects underperform at mimicking
the stimuli, exhibit lower bilateral facial symmetry, and produce less
variations across facial regions in terms of strength of activation; (iv)
in general, group differences are found to be more pronounced for
emotions with negatively valence, like Disgust and Sadness. This
suggests that these emotions are likely to induce a higher perception
of atypicality among the observers. Future work will be directed to-
wards investigating the differences when subjects are at rest position
before and after expressions, and jointly analyzing facial expressions
with emotion in speech.
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