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Abstract
Atypical speech prosody is a primary characteristic of autism
spectrum disorders (ASD), yet it is often excluded from diag-
nostic instrument algorithms due to poor subjective reliability.
Robust, objective prosodic cues can enhance our understand-
ing of those aspects which are atypical in autism. In this work,
we connect objective signal-derived descriptors of prosody to
subjective perceptions of prosodic awkwardness. Subjectively,
more awkward speech is less expressive (more monotone) and
more often has perceived awkward rate/rhythm, volume, and
intonation. We also find expressivity can be quantified through
objective intonation variability features, and that speaking rate
and rhythm cues are highly predictive of perceived awkward-
ness. Acoustic-prosodic features are also able to significantly
differentiate subjects with ASD from typically developing (TD)
subjects in a classification task, emphasizing the potential of
automated methods for diagnostic efficiency and clarity.
Index Terms: prosody, autism spectrum disorders, rhythm, in-
tonation, perceived awkwardness

1. Introduction
Speech prosody—the rhythm, stress, and intonation of
speech—plays a critical role in effective communication, dis-
ambiguating meaning and conveying paralinguistic information
like attitude and emotion. Prosodic patterns differ among speak-
ers, and a listener must take into account a particular level of
variability; but at a certain point, a threshold is crossed from
acceptable variability to perceived abnormality.

Atypical speech prosody is a primary symptom of autism
spectrum disorder (ASD), a development disorder defined by
impairments in social communication and reciprocity, as well
as restricted, repetitive behavioral patterns and interests [1].
Prosodic deficits in ASD, which exist in both perception and
production [2], have a detrimental impact on an individual’s
social-communicative abilities. People with ASD generally
have difficulty discerning a speaker’s intent from prosody, and
their own speech is often perceived as awkward. These prosodic
abnormalities may be attributable to impairments in Theory of
Mind (the ability to decode another person’s mental state, [3]).

Speech prosody is regarded as a high-impact, understud-
ied area in autism [4]; little is known about the specific
prosodic abnormalities within ASD and their prevalences.
While ‘Speech Abnormalities Associated with Autism (Into-
nation/Volume/Rhythm/Rate)’ is coded in the gold-standard
Autism Diagnostic Observation Scale (ADOS, [5]), it is not in-
cluded in the diagnostic algorithm due to subjective disagree-
ments between clinicians. Objective computational methods

can fill the gap [6]; atypical prosody quantification can sup-
port advances in the understanding and treatment of autism—
from better stratification which aids neuro-biological research
into ASD etiology, to better prosodic intervention systems.

Research on atypical prosody in autism has largely focused
on human perception of read or spontaneous speech. Such stud-
ies have reported, for example, atypicalities in sentential [7]
and contrastive stress [8], increased pausing [9], and abnormal
voice quality [10]. A perceptual rating tool, the Prosody-Voice
Screening Profile (PVSP, [11]), has been used to assess global
prosodic attributes in spontaneous speech, finding more inap-
propriate phrasing, stress, and resonance for ASD subjects [12].

Scalable acoustic correlates of atypical prosody are rel-
atively unexplored; such studies have reported increased f0
variability [13], prosodic differences in stress production [14],
and higher maximum f0 for ASD subjects [15]. Our previous
work related a variety of interpretable, automatically-extracted
prosodic (intonation, volume, rate, rhythm) and language cues
in a diagnostic session to ASD severity. Not only were the
child’s cues predictive of their level of symptom severity, but
so were those of the psychologist, who must continually ad-
just her behavior to that of the child’s throughout the inter-
action [16, 6, 17]. However, not all people with ASD have
prosodic difficulties, so it is desirable to relate our acoustic mea-
sures directly to perceived atypical prosody.

In this study, we ask naive human raters to assess various
types of prosodic awkwardness, then link these perceptions to
objective acoustic-prosodic measures. Raters score overall awk-
wardness, as well as awkwardness of individual components of
prosody: rate/rhythm, volume, and intonation/stress. We ex-
pect that agreement will be highest at the cumulative level, that
something sounds “odd.” Vocal expressivity is also rated since
ASD prosody is described as monotone or overly exaggerated,
which may contribute to perceived awkwardness. Through this
work, we aim to enhance our understanding of signal-derived
speech prosody measures, which are vital to behavioral interac-
tion analyses [6] and the creation of automated clinical tools.

2. Methodology
In the following sections we discuss the data collection and
participant demographics, perceptual rating scheme, acoustic-
prosodic features, and machine learning data analysis.

2.1. Data Collection and Participants

Data were recorded as part of an affective story retelling task.
Participants initially viewed a stimulus video in which an ac-
tor, “Safari Bob”, stated that he needed someone to fill in for



Table 1: Participant demographics. ‘∗’ designates difference at
α=0.05 level by Wilcoxon rank-sum test.

N Age (yr.) Female V-IQ P-IQ Rec. Vocab. Reading
ASD 43 12.9 1 (2.3%) 105 102∗ 111∗ 105
TD 26 13.6 2 (7.7%) 112 113∗ 122∗ 108

him as host of a children’s television show. Participants lis-
tened to a story told by Safari Bob, then retold it with the story
text displayed on screen. We focus our preliminary analyses on
one of the four stories, “Elephants”, which contains five sen-
tences. Of the possible 345 utterances for analysis (69x5), 322
are selected (µ=4.7s, σ=1.7s) post-exclusion of poor audio
quality and utterances that went far off-script. ASD and TD
(typically developing) participant demographics are presented
in Table 1, including: verbal IQ, performance IQ, receptive vo-
cabulary (as measured by the Peabody Picture Vocabulary Test-
Revised [18]), and reading level (as measured by the Woodcock
Johnson Test [19]). We control for the statistically-significant
group differences in demographics during later analysis. More
details can be found in the primary paper on this database [15].

2.2. Perceptual Ratings of Prosody
Our study is motivated by the general perceptions of awkward-
ness that occur when interacting with individuals with autism;
naive raters of prosody are able to detect an overall quality of
“awkwardness” in an ASD individual’s speech [20].

Each utterance is scored on N-point Likert scales by 15
naive raters on Amazon Mechanical Turk (MTurk). Raters
could listen to the files multiple times while judging a speaker’s
overall awkwardness and other related constructs. Specifically,
‘Awkwardness’ is obtained through inversion of a ‘Naturalness’
(non-awkwardness) rating, which is on a 4-point scale from
‘Very Awkward’ to ‘Natural (Not Awkward).’ Also, raters mark
the presence of awkwardness (binary) in three components
of prosody—‘Rate/Rhythm’, ‘Volume’, and ‘Intonation/Stress’.
Lastly, ‘Expressivity’ (animation) is rated on a 5-point scale
from ‘Extremely Flat or Monotone’ to ‘Overly Animated.’

Final ratings are obtained through averaging scores per ut-
terance. Given the variable quality of raters from MTurk, we
remove raters with very poor agreement with the initial mean
(ρS<0.2) and raters who evaluated less than 10 utterances. Ad-
ditionally, awkward prosody component scores (binary) are z-
normalized per-rater before fusion, which improves agreement.

2.3. Acoustic-Prosodic Features
Prosodic atypicalities associated with autism have been reported
in the domains of intonation, volume, rate, and voice quality;
as such, we compute a total of 37 features which target these
qualitative constructs. A novelty of this work is that we com-
pare features that jointly model prosody as it occurs with exact
lexical content versus those that do not. Our utterance-level fea-
tures that do not precisely model the lexical content are grouped
as rate & rhythm, voice quality, and intonation. Features which
model prosody jointly with lexical content include exemplar-
based intonation/stress and transcript-matching cues.

Speech rate & rhythm comprise 12 cues. Speech articu-
lation rate is measured as the median and inter-quartile ratio
(IQR) of individual syllable rates per-utterance; syllable bound-
aries are determined by forced-alignment using HTK. Speech
rhythm, the temporal patterning of speech units, is quantified
using Pairwise Variability Indices (PVI, [21]) and Global In-
terval Proportions (GIP, [22, 23]). Pairwise variability indices
measure durational variability of adjacent linguistic units; we
compute normalized and unnormalized PVI measures for con-
sonants, vowels, and syllables. GIP features include the per-
centage of vowel speech and the standard deviations of vowel
and consonant durations. We also compute the percentage of
pausing within an utterance, a key facet of rhythm.

Voice quality is captured by six features: median and IQR
of syllabic jitter, shimmer, and harmonics-to-noise-ratio (HNR).
Jitter and shimmer, the local variability in pitch and intensity,
respectively, are calculated using the method described in [6],
utilizing Praat [24]. HNR is extracted using VoiceSauce [25].

We model intonation through syllable-level parametrization
of pitch and intensity signals. We compute the slope and curva-
ture of these signals per-syllable, then calculate utterance-level
median and IQR. Raw signal means and standard deviations are
also extracted, totaling 12 features. This technique may capture
speaker idiosyncrasies in intonation.

Using exemplar-based template features, we implicitly
model intonation & stress as they occur jointly with the lexical
content. These features have previously been used in children’s
read prosody assessment computed against an adult narration
exemplar [26], and were previously proposed by Bone et al. for
studying prosody in ASD [27]. Exemplar features model the
evolution of a prosodic contour with spoken words compared to
a reference; an example for duration is shown in Fig. 1. First,
prosodic contours are extracted (pitch, intensity, and duration),
which are then time-aligned with word-boundaries. For each
word and contour, a single feature functional is computed (we
use median), producing a representation in which each word
holds a single prosodic value. Next, we obtain a single exem-
plar for comparison by averaging five productions with the best
rating (e.g., least awkward). This is done per-rating in a leave-
one-subject-out fashion; in the case of predicting ASD diagno-
sis, we use all TD subjects for deriving the exemplar. Lastly, we
compute the Spearman’s correlation (ρS) between an observed
prosodic template and the exemplar, generating one feature per
prosodic signal. Missing words or feature values are penalized;
we scale ρS by the percentage of valid feature values.

Transcript-matching features relating observed and refer-
ence transcripts include percentages of correct, inserted, deleted
(Fig. 1), and substituted words (computed via NIST SCTK).

2.4. Statistical Analysis and Machine Learning
Two types of analyses are conducted: correlation and predic-
tion/classification. Support Vector Regression and logistic re-
gression [28] are performed in a speaker-independent/sentence-

Figure 1: Duration sample versus exemplar for one sentence, where “just” was missing from the sample production. Computation:
ρS=0.90; fraction of samples with a feature value= 14

15
; final exemplar-score=0.90 ∗ 14

15
=0.84 .



Table 2: Spearman’s ρ inter-rater reliability (sig. at α=0.05).
Code Expr Awk R/R Vol Inton
Spearman’s ρ 0.70 0.57 0.42 0.37 0.25

independent manner to support generalization of results; param-
eters are tuned using two-level nested cross-validation. Percep-
tual ratings may vary for utterances from an individual speaker,
but their ASD diagnosis is constant. Therefore, analysis be-
tween subjective ratings and acoustics is conducted for all ut-
terances (treated individually); in contrast, we pool (average)
samples when predicting autism diagnosis; pooling predictions
across utterances also models realistic application of an auto-
matic system. This topic is discussed further in Section 4.2.

3. Analysis of Perceptual Ratings
In this section we discuss the inter-rater reliability of different
perceptual codes by our naive raters (Table 2), as well as corre-
lations between perceptual ratings, demographic variables (re-
ceptive vocabulary, P-IQ, & age), and ASD diagnosis (Table 3).
Table Legend: Expr - expressivity; Awk - awkwardness; awk-
ward R/R - rate/rhythm, Vol - volume, Inton - intonation/stress.

The naive raters achieve moderate or substantial agreement
for overall awkardness and expressivity (calculated as the me-
dian Spearman’s correlation between each rater and the mean
score of the other evaluators that rated those utterances). Under-
standably, there is much lower agreement for the more specific
components of prosodic awkwardness, listed in descending or-
der as follows: rate/rhythm, volume, and intonation/stress. Cu-
mulative perceptions tend to have much higher agreement than
more specific items; this is true for autism diagnostic instru-
ments [5, 29] and for the PVSP prosody examination [11].

Correlations between different perceptual ratings can also
inform the human perceptual process. Speakers that are per-
ceived as more generally awkward are also heard as less expres-
sive (ρS=−0.39), or more monotone. The global perception
of awkwardness can be further decomposed; awkward speak-
ers tend to have more awkward rate/rhythm (ρS=0.80), awk-
ward intonation (ρS=0.50), and awkward volume (ρS=0.35);
appropriate timing, or rate/rhythm, is a critical factor in judging
overall awkwardness for an utterance.

Next, we consider dependencies between perceptual codes
and demographic variables. Subjects with higher receptive vo-
cabulary are perceived as more expressive (ρS=0.27) and gen-
erally less awkward (ρS=−0.39)—this specifically includes
the domains of awkward rate/rhythm (ρS=−0.37) and awk-
ward intonation (ρS=−0.44); very similar relations exist be-
tween performance IQ and perceptual ratings. Younger subjects
tend to have higher incidence of awkward volume (ρS=−0.29).

A primary goal of this study is to examine prosodic awk-
wardness in autism. ASD subjects’ speech was perceived as
different than control subjects’ speech, even though the MTurk
raters were blind to study purpose, demographic makeup, and
task description. ASD speech was perceived as more awk-
ward (ρS=0.50), and had a higher rate of awkward rate/rhythm
(ρS=0.48), volume (ρS=0.32), and intonation (ρS=0.33). All
relations with ASD diagnosis remain significant (α=0.05) after
controlling for demographics (receptive vocab., P-IQ, & age).

Table 3: Correlations between speaker-averaged ratings, demo-
graphics, and ASD diagnosis. Bolded implies sig. at α=0.05.

Awk R/R Vol Inton Vocab P-IQ Age ASD
Expr -0.39 -0.25 0.09 0.16 0.27 0.31 0.05 -0.06
Awk 0.80 0.35 0.50 -0.39 -0.36 0.12 0.50
R/R 0.07 0.41 -0.37 -0.30 -0.14 0.48
Vol -0.05 0.07 -0.10 -0.29 0.32
Inton -0.44 -0.08 0.06 0.33
Vocab 0.40 -0.05 -0.22
P-IQ -0.08 -0.27
Age -0.10

4. Acoustic-Prosodic Cues of Awkwardness
Interpretable, objective signal measures can provide a bottom-
up explanation for these human perceptions of prosody, allow-
ing scalable application to larger data. In section 4.1, the most
informative prosodic cues for each perceptual rating are dis-
cussed, and in section 4.2, prosodic cues are used to predict
perceptual ratings and autism diagnosis.

4.1. Correlational Feature Analysis

The top five features related to each perceptual rating and ASD
diagnosis are provided in Table 4. Since the value of a feature is
dependent on various sources of noise in the feature extraction
process, we cannot confidently state that a construct is uninfor-
mative of a target variable, only that the extracted feature is not.

The top cues for overall awkwardness relate primarily to
timing; speech that is less awkward has less pausing, less local
variability in vowel duration, and a higher correlation with the
syllable-duration exemplars. Less awkward-sounding produc-
tions also adhere more to the transcript and insert fewer words.
Since raters were not given the text, aberrations from the tran-
script likely should not factor into the ratings, but may have had
other prosodic effects (e.g., increased pausing) which are more
directly relevant to perceived awkwardness.

Although agreement on awkwardness in prosodic sub-
components is lower, acoustic-prosodic cues can still provide
insights into the human perceptual process. Perceived awkward
rate/rhythm is captured by divergence from the normal relative
word-duration (exemplar features), increased pausing, and more
variable syllabic-duration. Awkward use of volume correlates
with increased pausing, higher median HNR, and less variable
syllabic-intensity slope—a possible marker of the flat, stilted
expression seen in ASD. Awkward intonation/stress is best ex-
plained by slower articulation rate (syl/s), as well as more vari-
able duration and syllabic-intensity dynamics.

Perceived expressivity is best captured by the variability of
pitch and intensity contours. More expressive speech has more
variable pitch and intensity, higher and more variable jitter, and
less pausing—all indicators of higher vocal arousal [30]. These
findings support the use of dynamic-intonation variability mea-
sures to assess monotone intonation in ASD.

Acoustic-prosodic cues also serve as evidence of differ-
ences between speech from ASD and TD subjects. All pre-
sented features are at least marginally significant (α=0.10

Table 4: Top five features correlated (ρS) with perceptual ratings and ASD diagnosis (ASD≡1, TD≡0). Bold: p<0.01; else p<0.05.
Perceptual Rating Diagnosis

Ranking Expressivity Overall Awkwardness Awkward Rate/Rhy. Awkward Volume Awkward Intonation Autism Spectrum
Feat. 1 0.43 f0 σ 0.47 pause % -0.40 dur. model ρ 0.28 pause % 0.42 PVI vowels -0.40 dur. model ρ
Feat. 2 0.42 jitter Mdn -0.39 dur. model ρ 0.39 pause % -0.25 int. slope IQR 0.37 vowel dur. σ 0.32 pause %
Feat. 3 0.40 jitter IQR 0.36 PVI vowels 0.35 vowel dur. σ 0.24 HNR Mdn 0.35 int. slope IQR -0.30 correct %
Feat. 4 -0.30 pause % -0.36 correct % 0.32 PVI vowels — — -0.34 rate Mdn (syl/s) -0.27 rate IQR (syl/s)
Feat. 5 0.29 int. σ 0.34 insertion % 0.31 PVI syllables — — 0.33 int. curv. IQR 0.26 substituted %



Table 5: Regression and classification of perceptual ratings
and ASD diagnosis via acoustic features and demographic vari-
ables. Bolded statistics are significant at the α=0.05 level by
one-sided tests. Nratings=322, NDiag.=69.

Perceptual Rating Diagnosis
Features Expr Awk RR Vol Into ASD
Baseline: Demog. 0.16 0.32 0.25 0.22 0.20 63%
Rate/Rhythm 0.25 0.53 0.45 0.24 0.30 69%
Exemplar 0.15 0.41 0.40 0.13 0.02 56%
Voice Qual. 0.43 0.17 0.08 0.12 -0.06 46%
Trans. Match 0.00 0.23 0.24 -0.14 0.04 59%
Intonation 0.38 0.06 0.02 0.12 0.25 48%
Feature Fusion 0.55 0.56 0.47 0.21 0.36 65%
Agreement 0.70 0.57 0.42 0.37 0.25 N/A
metric Spearman’s correlation (ρS) UAR

level) after controlling for receptive vocab., P-IQ, and age,
unless otherwise specified. ASD productions tend to have
lower correlations with durational exemplars trained (speaker-
independently) on TD subjects’ speech—objective evidence of
differences in ASD subjects’ use of duration relative to lexi-
cal content. Interestingly, ASD subjects had less variable ar-
ticulation rate (syl/s), another potential correlate of ‘monotone’
production. Speech from ASD subjects also contained more
pauses, and also matched the transcript less often—i.e., more
correct words and less substitutions, although substitution %
becomes non-significant after accounting for demographics.

Many of the most informative signal cues pertain to timing,
rate, and rhythm, which is unsurprising since the related sub-
jective code is a highly-explanatory factor for overall perceived
awkwardness; for example, pause frequency is an invaluable
cue in assessing awkwardness (as in other automatic speech as-
sessment scenarios such as children’s literacy [31]). Although
the agreement on perceived awkward volume and intonation is
relatively low, several intuitive signal relations emerged.

4.2. Predicting Perceptual Ratings

While the individual correlational analysis in the previous sec-
tion can inform interpretation in human-human behavioral in-
teraction analyses, automatic systems that support clinical re-
searchers can rely on joint modeling of many features. In this
section, we analyze the performance of different feature cat-
egories in predicting ratings of prosody and autism diagnosis
(Table 5); results of such experiments can inform not only the
acoustical dependence of our perceptions, but also those cues
which are associated with speech abnormalities of autism.

Rate & Rhythm features are significantly predictive of
all perceptual ratings, producing the highest performances in
nearly all experiments, with the sole exception being expressiv-
ity. The analysis of Section 4.1 showed timing features were
excellent correlates of perceived awkwardness. In fact, Rate
& Rhythm features alone meet or exceed the baseline results,
and achieve performance on par with inter-rater agreement for
all four awkward-prosody codes—e.g., for overall awkwardness
ρS=0.53 versus an agreement of ρS=0.57.

Exemplar features, which measure dynamic-differences in
word-time prosodic feature streams compared to a baseline
model (exemplar), produce significant prediction for overall
awkwardness, awkward rate/rhythm, and awkward volume, al-
beit below that of Rate & Rhythm features. The other lexical-
modeling features, Transcript Matching statistics, are able to ac-
count for a small amount of the variance associated with overall
awkwardness and awkward rate/rhythm through prediction.

The remaining two feature sets excel at quantifying expres-
sivity. The global and local variance in f0 and intensity captured

by Intonation and Voice Quality features predict expressivity
ratings moderately well (ρS=0.38 and ρS=0.43, respectively).
When Rate & Rhythm and the other acoustic cues are included
in the model, prediction improves to ρS=0.55, still below inter-
rater agreement (ρS=0.70). Expressivity is the only code for
which there is a large gain from fusion over Rate & Rhythm
features alone, highlighting the importance of timing cues.

Lastly, we predict ASD diagnosis using the provided
acoustic-prosodic cues. Since autism diagnosis is an intricate
procedure lasting hours and incorporating various sources of
information, we should not expect to achieve very high per-
formance from speech alone, much less from a few read utter-
ances. Still, prediction from acoustics allows us to observe the
importance of a group of signal cues in discovering differen-
tial patterns between groups (ASD and TD). Such findings can
eventually lead to improved automatic assessment and monitor-
ing systems or automatic prosodic tutor systems. Unweighted
average recall (UAR) prediction performances are presented for
ASD diagnosis (50% UAR is chance); speaker- and sentence-
independent models are evaluated on each utterance, then pre-
dictions are aggregated through majority voting per speaker.

Rate & Rhythm features achieve the best performance in
classifying ASD (69%), likely due to their utility in quantify-
ing awkward prosody, which we showed in Section 3 to be
associated with ASD diagnosis. Moreover, this is the only
individual feature group which produces significant classifica-
tion UAR1. After fusing all acoustic-prosodic features, classifier
performance drops (potentially due to insufficient data size) to
65%. Demographic features (receptive vocab., P-IQ, and age),
also achieve significant prediction at 63%.

5. Conclusion and Future Work
Speech cues are critical to finer characterization of autism spec-
trum disorder, yet there has been little headway toward a gener-
alizable operational definition of prosodic atypicalities in ASD;
e.g., prevalence estimates for various prosodic abnormalities are
still unknown. Fortunately, speech processing can provide scal-
able, objective measures to support scientific advances.

In this work, we link acoustic-prosodic cues to general per-
ceptions of speech prosody. Naive raters reach moderate to sub-
stantial agreement on cumulative aspects of prosody, but have
lower agreement about components of prosody, highlighting the
difficulty of explicating a general assessment; objective cues of-
fer insights into that process. Rate & rhythm features are predic-
tive of various awkwardness codes, producing correlations ap-
proaching inter-rater agreement; these timing cues additionally
differentiate ASD and TD groups. Exemplar features, which
jointly model prosody and lexical content, are also significantly
informative of awkwardness. Lastly, dynamic intonation fea-
tures can objectively quantify perceived expressivity.

In the future, we will continue to investigate the relationship
between perception of prosody and acoustic cues. Acoustic-
prosodic cues can provide novel insights into dyadic interac-
tions involving children with autism [6]. Eventually, systems
incorporating automatically extracted signal cues may be cre-
ated for enhanced diagnostics and behavioral monitoring as well
as prosodic intervention.
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